LAB-AIDS® #19 A QUALITATIVE INTRODUCTION TO WATER POLLUTION KIT Student Worksheet and Guide

This kit provides the necessary materials and methods for detecting various common water pollutants.

- 1. Read the instructions carefully before starting any experiment. Measure the chemicals carefully.
- 2. It is essential that all materials used be clean in order to obtain accurate results.
- 3. Replace caps and covers of vials and bottles immediately after use to prevent contamination.
- 4. Where possible, water samples should be drawn closely as possible to the source of supply. Avoid turbulence or air bubbles when filing sample bottles. Fill at a 45° angle.
- 5. Carefully record procedures and observations for each sample tested.

I Ammonia nitrogen

Procedure:

- 1. Measure a 10 mL water sample into the calibrated tube.
- 2. Add 1 drop of Ammonia Test Sol. #1 to the water sample. Mix.
- 3. Add 8 drops of Ammonia Test Sol. #2 to the water sample. Mix.
- 4. If ammonia nitrogen is present in sample, a yellow color will develop. Allow 8-10 minutes for full color development. (Note: The sample can be poured into the large well of the Chemplate® to await the time.)

II pH

Procedure:

1. Place a small sample of the water to be tested (8-10 drops) in a cavity of the Chemplate[∞].

2. Add 1 drop of Universal pH Indicator and mix with the plastic spatula. Compare the color that immediately appears with the list below:

pH 1	cherry red	pH 6	yellow
pH 2	rose	pH 7	yellow-green
pH 3	red-orange	pH 8	green
pH 4	orange-red	pH 9	blue-green
pH 5	orange	pH 10	blue

III Chlorine

Procedure:

- 1. Fill a Chemplate® cavity approximately 2/3 full with the water to be tested.
- 2. Add 2 drops of Chlorine Test Solution and mix with the plastic spatula.
- 3. If chlorine is present, a yellow color will develop. Allow 5 minutes for full color development.

IV Chromium (Chromate)

Procedure:

- 1. Measure a 10 mL water sample in a calibrated tube.
- 2. Add 2 drops of Chromium Extracting Solution to the water sample. Place cap on calibrated tube and shake.
- 3. Add a level spatula of the Chromate Indicator Powder. Replace the cap and mix the sample until the powder is dissolved.
- 4. A reddish-purple color forms in the presence of chromate and the amount of color is directly proportional to the amount of chromium (chromate) present in the sample.

V Copper

Procedure:

- 1. Fill a Chemplate® cavity approximately 2/3 full with a sample of the water.
- 2. Add 1 drop of Copper Test Sol. #1. Mix and allow to stand for 1 minute.
- 3. Add 2-3 drops of Copper Test Sol. #2. Mix and allow to stand at least 2 minutes but not more than 10 minutes.
- 4. An orange colored solution indicates the presence of copper.

VI Cyanide

Procedure:

- 1. Measure a 10 mL water sample into the calibrated tube.
- 2. Add 2 drops of Cyanide Test Sol. #1 and mix.
- 3. Add 2 drops of Cvanide Test Sol. #2 and mix
- 4. If cyanide is present, a pink color will develop which turns violet in a few minutes. Allow approximately 10 minutes for the color to develop.

VII Iron

Procedure:

- 1. Measure a 5 mL water sample in the calibrated tube.
- 2. Add 5 drops of Iron Test Sol. #1. (This is 5% Sulfuric acid be careful.)
- 3. Add I level spatula of Iron Indicator Powder to the sample. Replace the cap and mix to dissolve.
- 4. If iron is present, a wine red color will develop. Allow 2 minutes for full color development.

VIII Nitrate nitrogen

Procedure:

- 1. Place approximately a 3 mL sample of water in the calibrated tube.
- 2. Add enough Nitrate Test Sol. #1 (2 mL) to bring the sample up to 5 mL. Mix vigorously.
- 3. With the plastic spatula, add 2 level measures of Nitrate Indicator Powder #2.
- 4. Replace the cover and shake vigorously until the powder is completely dissolved.
- 5. If nitrate nitrogen in present, a very light pink color will develop in trace amounts within 1-2 minutes. A reddish purple color will develop with high concentrations of nitrate nitrogen. Allow 5 minutes for full color development. (A white precipitate will settle in the bottom of the tube which is not relevant to the presence of nitrates.)

IX Phosphorous (phosphates)

Procedure:

- 1. Measure a 5 mL water sample in the graduated tube.
- 2. Add 15 drops of Phosphate Test Sol. #1 and mix. Allow to stand 3-5 minutes. A light yellow color may appear.
- 3. Add 2-3 drops of Phosphate Test Sol. #2. Replace the cover and mix.
- 4. If phosphate is present, a blue color will form immediately.

X Silica

Procedure:

- 1. Measure a 5 mL water sample in the calibrated tube.
- 2. Add 3 drops of Silica Test Sol. #1 and mix.
- 3. Add 6 drops of Silica Test Sol. #2 and mix.
- 4. Add 4 drops of Silica Test Sol. #3 and mix.
- 5. Add 1 drop of Silica Test Sol. #4 and mix.
- 6. If silica is present, a blue color will form immediately.

XI Sulfide

Procedure:

- 1. Measure a 5 mL water sample in the graduated tube.
- 2. Add 15 drops of Sulfide Test Sol. #1 and mix. (Note: This solution has a high sulfuric acid content and care should be taken.)
- 3. Add 3 drops of Sulfide Test Sol. #2. Mix and allow to stand for 1 minute.
- 4. Add 20 drops of Sulfide Test Sol. #3 and mix.
- 5. If sulfide is present, a blue color will appear.

WA	TER SAMPLE NAME	LOCATION	DATE
TES	TS.	COLOR OBSERVED	(+) or (-)
1	Ammonia Nitrogen		
11	рН		pH
Ш	Chlorine		
IV	Chromium		
V	Copper		
VI	Cyanide		
VII	Iron		
VIII	Nitrate Nitrogen		
IX	Phosphorus		
Χ	Silica		
Xi	Sulfide		
Con	clusions and Summary:		
	,		

tudent's Name Date	 A Charles
	 IGNITED ON