"Save our Shells" - Shells Protocol- Please DO NOT WRITE ON THIS PACKET- PUT DATA INTO NOTEBOOK!

Central Ouestion:

How does a decrease in the pH of seawater affect the **calcium carbonate shells** of animals?

Overview of Experiment:

Shelled organisms and organisms that create calcium carbonate skeletons are threatened by the drop in ocean pH (rise in ocean acidity) related to increased atmospheric carbon dioxide levels. Increasing acidity/lowered pH in ocean water not only causes the shells to dissolve, but it reduces the availability of carbonate ions – which animals use to build their shells and skeletons.

You will observe the effect of an acidic environment on mussel shells through observations and measurements.

Student Pre- lab Ouestions:

- 1. How do organisms make their shells? What are shells made of?
- 2. What do you expect to happen to the shell in an acidic solution such as vinegar?
- 3. What are sources of carbon dioxide and which of these sources are most likely to affect ocean pH?

Hypothesis:		

Role in Group	Student Name
Timer	
Recorder	
Materials	
Measuring	
Material Checklist(4) shells (2 untreated and 2 pre-treated150 mL vinegar150 mL salt water(1) beaker	in vinegar)(1) tweezer(3) paper towels(1) sharpie(1) timer

Lab Procedure

- 1. MATERIALS: Remove your two untreated shells from their bags.
- 2. <u>MATERIALS</u>: With a sharpie, label one shell "E' for experimental and one shell "C" for control.
- 3. <u>RECORDER</u>: Using your data table record your group's initial observations of the control and experimental shell characteristics.
- 4. MATERIALS: Find the mass of each of the shells.
- 5. <u>RECORDER</u>: Record the starting masses of both shells on your data table.
- 6. MEASURING: Pour 150 ml of vinegar into a 500 ml beaker and 150 ml of salt water into a second 500ml beaker.
- 7. TIMER: Set the timer for 30min.
- 8. <u>MATERIALS</u>: At the same time: Add the untreated, control shell "C" shell to salt water and the untreated, experimental shell "E" to the beaker of vinegar and start the timer.
- 9. <u>RECORDER</u>: In your data table, observe and record your group's observations of what is happening to the shell while exposed to the vinegar over time. (at 0 minutes and 15 minutes)

10. ***EVERYONE: Between observations of your shell in acid (vinegar), spend time observing and recording observations of shell characteristics for the pretreated ("Low Exposure" and "High Exposure") shells.

- 11. MATERIALS: After 30min use the tweezers to remove the shell from the vinegar and place on a paper towel. Dry the shell with a paper towel as best as you can.
- 12. MEASURING: Find the mass of both the control and the experimental shells.
- **13**.<u>RECORDER</u>: Record the final masses and observations of the experimental and control shells after treatment.
- 14. <u>EVERYONE</u>: Decide how to test the strength of the shell. Options are:
 - a. Test the shell strength by dropping the shell from a height of 5 feet from the ground and then record the damage or breakage on your data table
 - **b.** Break the shell with text books to see how easily the shells break

Analy	vsis/Dis	cussion	of Data

1.	When you immersed the shells in vinegar how did you know that a reaction was
	happening?

2.	How did observing the shells in vinegar relate to how animals are affected by a
	lower pH of ocean water?

3. How would shelled organisms be affected by a lower pH of ocean

	4.	What are	the	primary	functions	of shell	for these	animals?
--	----	----------	-----	---------	-----------	----------	-----------	----------

5. Does it cost the animal energy to rebuild or repair their shell	5.	Does it co	st the animal	l energy t	to rebuild o	r repair	their	shell
--	----	------------	---------------	------------	--------------	----------	-------	-------

Conclusion/summary (revisit hypothesis)						

