
Biogeochemical Cycles

Biogeochemical Cycles

- Literal meaning:
 - Bio "living"
 - Geo "rocks and soil"
 - Chemical "processes"
- 2 main types
 - Gaseous
 - Pools/fluxes
 - global
 - Sedimentary
 - Soil
 - Rocks
 - minerals

Ok...so what does that mean?

Biogeochemical Cycles

- Gases important for life:
 - Nitrogen (78%)
 - Oxygen (21%)
 - Carbon Dioxide (0.03%)
- Gaseous and sedimentary cycles:
 - Involve biological and nonbiological processes
 - Driven by flow of energy through the ecosystem
 - Tied to the water-cycle
 - Water is how things move...without water, biogeochemical cycles cease!!!
 - All Biogeochemical Cycles have a common structure:
 - Inputs
 - Internal cycling
 - Outputs

Cycle Structure - Inputs

- Gaseous (N and C)
 - Via atmosphere
- Sedimentary (calcium and P)
 Weathering of rocks/minerals
- Supplements
 - Precipitation (Wetfall)
 - Airborne particles and aerosols (Dryfall)
 - 70-90% of rainfall striking forest canopy reaches the forest floor
 - This contributes nutrients deposited on the leaves making water reaching the forest floor richer in calcium, sodium, potassium, etc. than rainfall in open areas

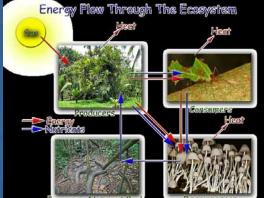
Cycling Structure - Outputs

- Exports must be offset by inputs to prevent a net decline
- Various exports:
 - Carbon (CO2 into atmosphere via respiration)
 - Microbial and plant transformations of nutrients
- Organic matter
 - Can be transported through a watershed through surface flow (streams/rivers)
 - Majority of energy input in stream ecosystems
 - Can be transferred via herbivores
 - Organic matter prevents rapid loss from a system
 - Nutrients bound tightly together
 - Must be released by decomposers

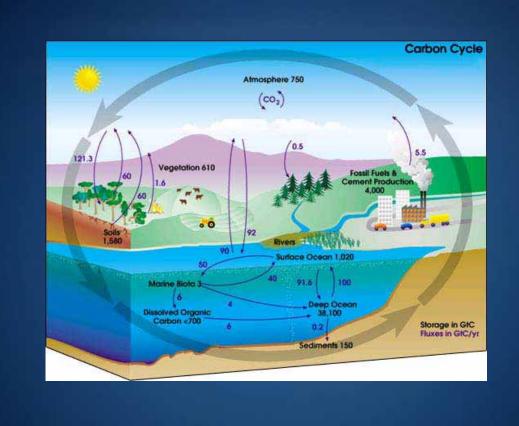
Cycling Structure - Outputs

- Underground transport
 - Leaching
 - May be balanced by inputs (e.g. weathering)
- Harvesting
 - Farming
 - Logging

- So how do we replace losses caused by farming/logging?
- Logging can also alter processes involved in internal cycling...
- What about FIRE!!!????!!!
 Read Ch. 19 (Ecological Issues: The Yellowstone Fires of 1988)


The Global Perspective

- Usually biogeochemical cycles are studied at a local scale
- However, exchanges are linked and
 The output from one ecosystem represents an input to another
- This requires study at a broad spatial framework
 Particularly true with nutrients in a gaseous cycle
- Gaseous cycles
 - Main pools are oceanic and atmospheric
 - Global circulation patterns
- Now to more specifics...

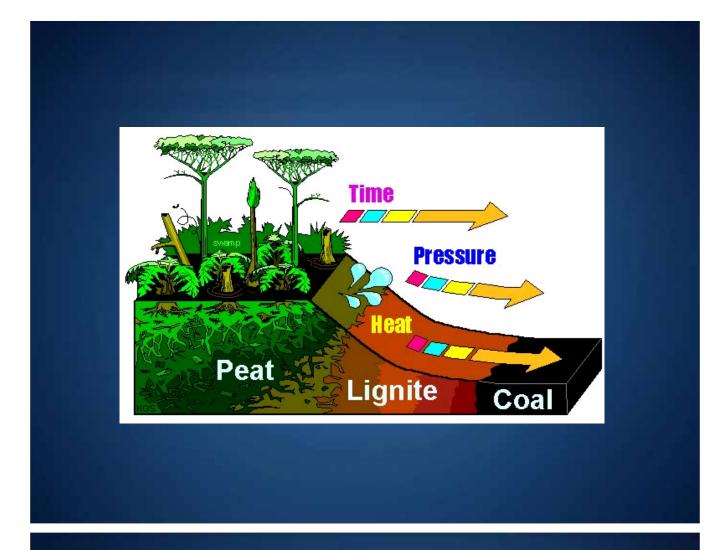


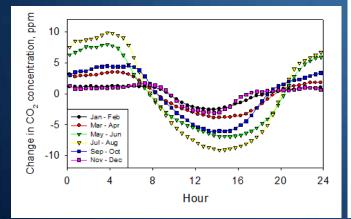
The Carbon Cycle

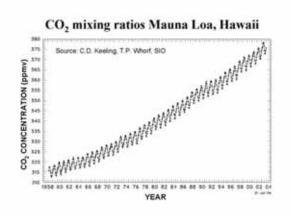
- Why is productivity often expressed in terms of grams of carbon fixed per square meter per year?
 Energy Flow Through The Eccepterent
- CO₂: The source of all carbon
- · Carbon "flows"
 - Photosynthesis
 - Herbivores
 - Carnivores
 - Released by?
 - Or? And is released by?

- Difference in ? And ? Is net primary productivity (in units of carbon), but
- Difference in ? And ? Is net ecosystem productivity!

The carbon cycleAt what rate does this happen (cycling through the ecosystem)?


- Depends on a number of processes...
- Particularly: primary productivity, and
- Decomposition
- Both of these are influenced by environment
 - Temperature
 - Precipitation
- Warm/wet (example?) = high
- Cool/dry (example?) = low
- What about a swamp?
- Aquatic systems?



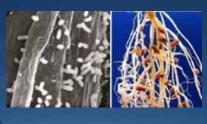


Carbon cycle fluctuations:

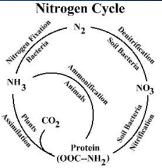
- Varies daily and seasonally...Why?
- Where does all this carbon come from?
 - Buried in sedimentary rocks
 - Fossil fuels
 - Oceans (bicarbonate and carbonate ions)
 - Terrestrial systems (biomass)
 - Believed now to be a sink which means what to us?

The Nitrogen Cycle

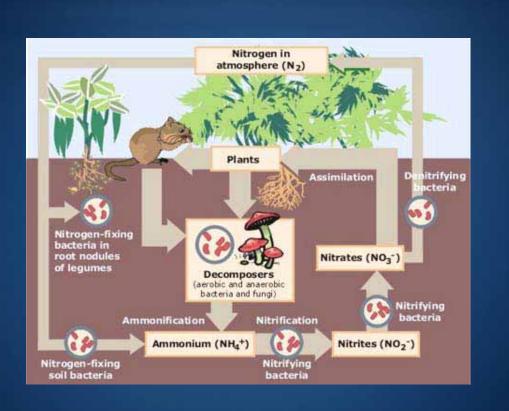
- Essential constituent of protein (the building block of all living tissue)
- Available to plants in 2 forms:
 - Ammonium (NH₄⁺)
 - Nitrate (NO_3^-)
- Atmospheric N is in the form N₂
 - Not available for assimilation
- So how does N enter the ecosystem?
- 2 ways:
 - Atmospheric deposition (wetfall/dryfall)
 - Nitrogen fixation (much more interesting)


Nitrogen Fixation

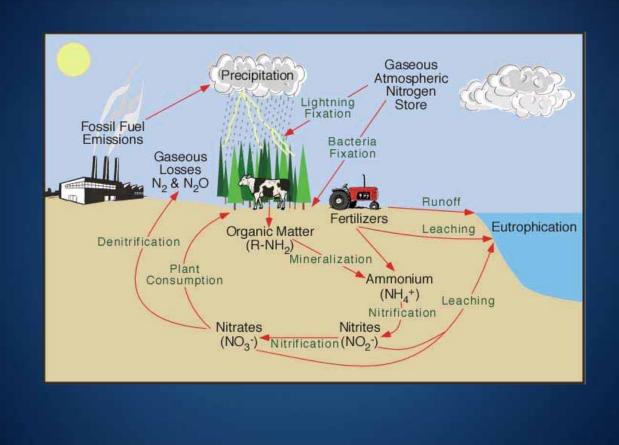
- 2 types of fixation
- High-energy fixation
 - Lightning
 - Combines nitrogen with O and H of water (requires very high energy)
 - Results in ammonia and nitrates
 - Responsible for less than 0.4 kg N/ha per year (2/3 ammonia and 1/3 nitric acid (HNO₃)
- Biological fixation
 - Produces 10 kg N/ha per year (~ 90%)
- How does this happen?
 - Symbiotic bacteria/plant relationship
 - Free-living aerobic bacteria
 - Cyanobacteria (blue-green algae)



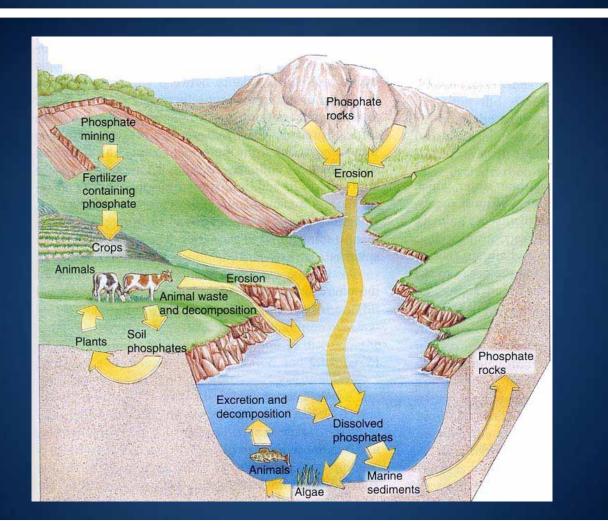
Nitrogen Fixation



- N₂ is split into 2 free N's
- Combined with H to form 2 molecules of ammonia (NH₃)
- Requires considerable energy
 - 1g of N fixed requires 10g glucose (and where does glucose come from?)
- Some examples:
 - Rhizobium bacteria
 - Associated with legumes (preeminent nitrogen fixers)
 - Certain Lichens
 - What is a Lichen?



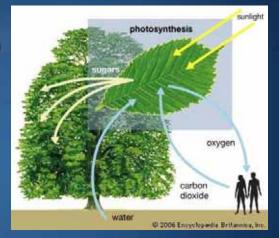
Nitrogen Cycle


- Ammonification
- Nitrification
- Denitrification
 - Common in anaerobic conditions
- Nitrates are the most common form of nitrogen exported from terrestrial ecosystems in stream water
 - In undisturbed systems this is small
- The global Nitrogen cycle
 - Same idea, global scale
 - Human impacts

Phosphorus Cycle

- No atmospheric pool
- Short supply under natural conditions
- When phosphorus is added to aquatic systems, what happens?
- Major reservoir for P is
 - Rock
 - Minerals
- 3 states in aquatic ecosystems
 - Particulate organic phosphorus
 - Dissolved organic phosphates
 - Inorganic phosphates
- Concentration in water is low but there is a lot of water!
 - Turnover of organic phosphorus is very high
- The phosphorus cycle is active on a geological time-scale

Sulfur Cycle


- Both sedimentary and gaseous phases
- Poorly understood globally

Oxygen Cycle

- Supports Life (found mostly in the atmosphere)
- 2 significant sources
 - Breakup of water vapor (via sunlight)
 - Photosynthesis

Other reservoirs

- -Water
- Carbon Dioxide
- Also biologically exchangeable as nitrates and sulfates (transformed to ammonia and hydrogen sulfide)
- Oxygen is very reactive!
 - Cycling is complex
 - Constitutient of carbon dioxide

